
Finite Automata
Part Two

Recap from Last Time

DFAs

A DFA is a

Deterministic

Finite

Automaton

DFAs are the simplest type of automaton
that we will see in this course.

DFAs

A DFA is defined relative to some alphabet
Σ.

For each state in the DFA, there must be
exactly one transition defined for each
symbol in Σ.

This is the “deterministic” part of DFA.

There is a unique start state.

There are zero or more accepting states.

A language L is called a regular language
if there exists a DFA D such that ℒ(D) = L.

NFAs

An NFA is a

Nondeterministic

Finite

Automaton

Can have missing transitions or multiple
transitions defined on the same input
symbol.

Accepts if any possible series of choices
leads to an accepting state.

Hello, NFA!

q2q2q2q2q1q1q0q0

h i

start h i

q0 q2q2q2q2

Hello, NFA!

q1q1q0

h i

start h i

q1q0q0 q2q2q2q2

Hello, NFA!

q1

h i

start h i

q1q0q0 q2q2q2q2

Hello, NFA!

q1

h i

start h i

q2q2q1q1q0q0 q2q2

Hello, NFA!

h i

start h i

q2q2q1q1q0q0 q2q2

Hello, NFA!

h i

start h i

q2q2q2q2

Tragedy in Paradise

q1q1q0q0

h i p

start h i

q0 q2q2q2q2

Tragedy in Paradise

q1q1q0

h i p

start h i

q1q0q0 q2q2q2q2

Tragedy in Paradise

q1

h i p

start h i

q1q0q0 q2q2q2q2

Tragedy in Paradise

q1

h i p

start h i

q2q2q1q1q0q0 q2q2

Tragedy in Paradise

h i p

start h i

q2q2q1q1q0q0 q2q2

Tragedy in Paradise

h i p

start h i

q2q2q1q1q0q0 q2

Tragedy in Paradise

h i p

start h i

q2q2q1q1q0q0

Tragedy in Paradise

h i p

start h i

NFA Languages

The language of an NFA is

ℒ(N) = { w ∈ Σ* | N accepts w }.

What is the language of this NFA?

(Assume Σ = {h, i}.)

q2q2q1q1q0q0

start h i

NFA Languages

The language of an NFA is

ℒ(N) = { w ∈ Σ* | N accepts w }.

q1q1q0q0 q2q2q2q2Σ = {0, 1}

q0q0q0q0
q0

start 1 1

0, 1

start startstart

0, 1

ε-Transitions

NFAs have a special type of transition called the
ε-transition.

An NFA may follow any number of ε-transitions at
any time without consuming any input.

q0 q1

q4 q5

q2

q0q3

q0

ε-Transitions

NFAs have a special type of transition called the
ε-transition.

An NFA may follow any number of ε-transitions at
any time without consuming any input.

q1

q4 q5

q2

q3 q4

start a a

a

b

b

ε

b, ε

ε

q0 q1

q4 q5

q2

q0q3

q0

ε-Transitions

NFAs have a special type of transition called the
ε-transition.

An NFA may follow any number of ε-transitions at
any time without consuming any input.

q1

q4 q5

q2

q3 q4 b a a b b

start a a

a

b

b

ε

b, ε

ε

q0 q1

q4 q5

q2

q0q3

q0

ε-Transitions

NFAs have a special type of transition called the
ε-transition.

An NFA may follow any number of ε-transitions at
any time without consuming any input.

q1

q4 q5

q2

q3 q4 b a a b b

start a a

a

b

b

ε

b, ε

ε

q0q0 q1

q4 q5

q2

q0q3

ε-Transitions

NFAs have a special type of transition called the
ε-transition.

An NFA may follow any number of ε-transitions at
any time without consuming any input.

q1

q4 q5

q2

q3 q4 b a a b b

start a a

a

b

b

ε

b, ε

ε

q0q3q3

q0q0 q1

q4 q5

q2

ε-Transitions

NFAs have a special type of transition called the
ε-transition.

An NFA may follow any number of ε-transitions at
any time without consuming any input.

q1

q4 q5

q2

q4 b a a b b

start a a

a

b

b

ε

b, ε

ε

q4q0q3q3

q0q0 q1

q4 q5

q2

ε-Transitions

NFAs have a special type of transition called the
ε-transition.

An NFA may follow any number of ε-transitions at
any time without consuming any input.

q1

q5

q2

b a a b b

start a a

a

b

b

ε

b, ε

ε

q4

q1

q4q0q3q3

q0q0 q1

q5

q2

ε-Transitions

NFAs have a special type of transition called the
ε-transition.

An NFA may follow any number of ε-transitions at
any time without consuming any input.

q5

q2

q4 b a a b b

start a a

a

b

b

ε

b, ε

ε

q1 q2

q4

q1

q4q0q3q3

q0q0

q5

q2

ε-Transitions

NFAs have a special type of transition called the
ε-transition.

An NFA may follow any number of ε-transitions at
any time without consuming any input.

q5q4 b a a b b

start a a

a

b

b

ε

b, ε

ε

q0 q2q1 q2

q4

q1

q4q0q3q3

q0

q5

ε-Transitions

NFAs have a special type of transition called the
ε-transition.

An NFA may follow any number of ε-transitions at
any time without consuming any input.

q5q4 b a a b b

start a a

a

b

b

ε

b, ε

ε

q0q3

q0q0 q2q1 q2

q4

q1

q4q3 q5

ε-Transitions

NFAs have a special type of transition called the
ε-transition.

An NFA may follow any number of ε-transitions at
any time without consuming any input.

q5q4 b a a b b

start a a

a

b

b

ε

b, ε

ε

q4q0q3q3

q0q0 q2q1 q2

q4

q1

q5

ε-Transitions

NFAs have a special type of transition called the
ε-transition.

An NFA may follow any number of ε-transitions at
any time without consuming any input.

q5 b a a b b

start a a

a

b

b

ε

b, ε

ε

q4 q5q4q0q3q3

q0q0 q2q1 q2q1

q5

ε-Transitions

NFAs have a special type of transition called the
ε-transition.

An NFA may follow any number of ε-transitions at
any time without consuming any input.

q4 b a a b b

start a a

a

b

b

ε

b, ε

ε

q0q3 q5q4 q5q4q3

q0q0 q2q1 q2q1

ε-Transitions

NFAs have a special type of transition called the
ε-transition.

An NFA may follow any number of ε-transitions at
any time without consuming any input.

q4 b a a b b

start a a

a

b

b

ε

b, ε

ε

q4q3q3 q5q4 q5

q0q0 q2q1 q2q1

ε-Transitions

NFAs have a special type of transition called the
ε-transition.

An NFA may follow any number of ε-transitions at
any time without consuming any input.

b a a b b

start a a

a

b

b

ε

b, ε

ε

q4q3q3 q5q4 q5

q0q0 q2q1 q2q1

ε-Transitions

NFAs have a special type of transition called the
ε-transition.

An NFA may follow any number of ε-transitions at
any time without consuming any input.

b a a b b

start a a

a

b

b

ε

b, ε

ε

ε-Transitions

NFAs have a special type of transition called the
ε-transition.

An NFA may follow any number of ε-transitions at
any time without consuming any input.

NFAs are not required to follow ε-transitions. It's
simply another option at the machine's disposal.

Intuiting Nondeterminism

Nondeterministic machines are a serious
departure from physical computers. How
can we build up an intuition for them?

There are two particularly useful
frameworks for interpreting
nondeterminism:

Perfect positive guessing

Massive parallelism

q₀ q₁ q₂ q₃

Perfect Positive Guessing

q₀ q₁ q₂ q₃q₃
start b a

Σ

a

q₀ q₁ q₂ q₃

Perfect Positive Guessing

a

q₀ q₁ q₂

b a b

q₃

a

q₃
start b a

Σ

a

q₀q₀ q₁ q₂ q₃

Perfect Positive Guessing

a

q₁ q₂

b a b

q₃

a

q₃
start b a

Σ

a

q₀q₀ q₁ q₂ q₃

Perfect Positive Guessing

a

q₁ q₂

b a b

q₃

a

q₃
start b a

Σ

a

q₀q₀ q₁ q₂ q₃

Perfect Positive Guessing

a

q₁ q₂

b a b

q₃

a

q₃
start b a

Σ

a

q₀ q₁

a b

q₀ q₁ q₂ q₃

Perfect Positive Guessing

a

q₂

b

q₃

a

q₃
start b a

Σ

a

q₀ q₁

a b

q₀ q₁ q₂ q₃

Perfect Positive Guessing

a

q₂

b

q₃

a

q₃
start b a

Σ

a

q₁ q₂q₀ q₁

a b

q₀ q₂ q₃

Perfect Positive Guessing

a b

q₃

a

q₃
start b a

Σ

a

q₁ q₂q₀ q₁

a b

q₀ q₂ q₃

Perfect Positive Guessing

a b

q₃

a

q₃
start b a

Σ

a

q₃q₃q₂q₁ q₂q₀ q₁

a b

q₀

Perfect Positive Guessing

a b a

q₃
start b a

Σ

a

q₃q₃q₂q₁ q₂q₀ q₁

a b

q₀

Perfect Positive Guessing

a b a

q₃
start b a

Σ

a

Perfect Positive Guessing

We can view nondeterministic machines as
having Magic Superpowers that enable them
to guess choices that lead to an accepting
state.

If there is at least one choice that leads to an
accepting state, the machine will guess it.

If there are no choices, the machine guesses
any one of the wrong guesses.

There is no known way to physically model
this intuition of nondeterminism – this is quite
a departure from reality!

q₃q₃q₂q₁ q₂q₀ q₁q₀

Massive Parallelism

a b a b a

q₃
start b a

Σ

a

q₃q₂q₁q₀

Massive Parallelism

a b a b a

q₃
start b a

Σ

a

q₃q₂q₁q₀

Massive Parallelism

a b a b a

q₃
start b a

Σ

a

q₃q₂q₁q₀

Massive Parallelism

a b a b a

q₃
start b a

Σ

a

q₃q₂q₁q₀

Massive Parallelism

a b a b a

q₃
start b a

Σ

a

q₃q₂q₁q₀

Massive Parallelism

a b a b a

q₃
start b a

Σ

a

q₃q₂q₁q₀

Massive Parallelism

a b a b a

q₃
start b a

Σ

a

q₃q₂q₁q₀

Massive Parallelism

a b a b a

q₃
start b a

Σ

a

q₃q₂q₁q₀

Massive Parallelism

a b a b a

q₃
start b a

Σ

a

q₃q₂q₁q₀

Massive Parallelism

a b a b a

q₃
start b a

Σ

a

q₃q₂q₁q₀

Massive Parallelism

a b a b a

q₃
start b a

Σ

a

q₃q₂q₁q₀

Massive Parallelism

a b a b a

q₃
start b a

Σ

a

q₃q₂q₁q₀

Massive Parallelism

a b a b a

q₃
start b a

Σ

a

q₃q₂q₁q₀

Massive Parallelism

a b a b a

q₃
start b a

Σ

a

q₃q₂q₁q₀

Massive Parallelism

a b a b a

q₃
start b a

Σ

a

q₃q₂q₁q₀

Massive Parallelism

a b a b a

q₃
start b a

Σ

a

q₃q₂q₁q₀

Massive Parallelism

a b a b a

q₃
start b a

Σ

a

q₃q₂q₁q₀

Massive Parallelism

a b a b a

q₃
start b a

Σ

a

q₃q₂q₁q₀

Massive Parallelism

a b a b a

q₃
start b a

Σ

a

q₃q₂q₁q₀

Massive Parallelism

a b a b a

q₃
start b a

Σ

a

q₃q₂q₁q₀

Massive Parallelism

a b a b a

q₃
start b a

Σ

a

q₃q₂q₁q₀

Massive Parallelism

a b a b a

q₃
start b a

Σ

a

q₃q₂q₁q₀

Massive Parallelism

a b a b a

q₃
start b a

Σ

a

q₃q₂q₁q₀

Massive Parallelism

a b a b a

q₃
start b a

Σ

a

q₃q₂q₁q₀

Massive Parallelism

a b a b a

q₃
start b a

Σ

a

q₃q₂q₁q₀

Massive Parallelism

a b a b a

q₃
start b a

Σ

a

q₃q₂q₁q₀

Massive Parallelism

a b a b a

q₃
start b a

Σ

a

q₃q₂q₁q₀

Massive Parallelism

a b a b a

q₃
start b a

Σ

a

q₃q₂q₁q₀

Massive Parallelism

a b a b a

q₃
start b a

Σ

a

q₃q₂q₁q₀

Massive Parallelism

a b a b a

q₃
start b a

Σ

a

q₂q₁q₀

Massive Parallelism

a b a b a

q₃q₃

We're in at least one accepting state,
so there's some path that gets us to an

accepting state.

start b a

Σ

a

q₀ q₃q₂q₁

Massive Parallelism

a b a b

q₃q₀
start b a

Σ

a

q₃q₂q₁q₀

Massive Parallelism

a b a b

q₃
start b a

Σ

a

q₃q₂q₁q₀

Massive Parallelism

a b a b

q₃
start b a

Σ

a

q₃q₂q₁q₀

Massive Parallelism

a b a b

q₃
start b a

Σ

a

q₃q₂q₁q₀

Massive Parallelism

a b a b

q₃
start b a

Σ

a

q₃q₂q₁q₀

Massive Parallelism

a b a b

q₃
start b a

Σ

a

q₃q₂q₁q₀

Massive Parallelism

a b a b

q₃
start b a

Σ

a

q₃q₂q₁q₀

Massive Parallelism

a b a b

q₃
start b a

Σ

a

q₃q₂q₁q₀

Massive Parallelism

a b a b

q₃
start b a

Σ

a

q₃q₂q₁q₀

Massive Parallelism

a b a b

q₃
start b a

Σ

a

q₃q₂q₁q₀

Massive Parallelism

a b a b

q₃
start b a

Σ

a

q₃q₂q₁q₀

Massive Parallelism

a b a b

q₃
start b a

Σ

a

q₃q₂q₁q₀

Massive Parallelism

a b a b

q₃
start b a

Σ

a

q₃q₂q₁q₀

Massive Parallelism

a b a b

q₃
start b a

Σ

a

q₃q₂q₁q₀

Massive Parallelism

a b a b

q₃
start b a

Σ

a

q₃q₂q₁q₀

Massive Parallelism

a b a b

q₃
start b a

Σ

a

q₃q₂q₁q₀

Massive Parallelism

a b a b

q₃
start b a

Σ

a

q₃q₂q₁q₀

Massive Parallelism

a b a b

q₃
start b a

Σ

a

q₃q₂q₁q₀

Massive Parallelism

a b a b

q₃
start b a

Σ

a

q₃q₂q₁q₀

Massive Parallelism

a b a b

q₃
start b a

Σ

a

q₃q₂q₁q₀

Massive Parallelism

a b a b

q₃
start b a

Σ

a

q₃q₂q₁q₀

Massive Parallelism

a b a b

q₃
start b a

Σ

a

q₃q₂q₁q₀

Massive Parallelism

a b a b

q₃
start b a

Σ

a

q₃q₂q₁q₀

Massive Parallelism

a b a b

q₃
start b a

Σ

a

q₂q₁q₀

Massive Parallelism

a b a b

q₃q₃

We’re not in any accepting state, so no
possible path accepts.

start b a

Σ

a

Massive Parallelism

An NFA can be thought of as a DFA that can be in many states
at once.

At each point in time, when the NFA needs to follow a
transition, it tries all the options at the same time.

(Here's a rigorous explanation about how this works; read this
on your own time).

Start off in the set of all states formed by taking the start state
and including each state that can be reached by zero or more ε-
transitions.

When you read a symbol a in a set of states S:

Form the set S’ of states that can be reached by following a
single a transition from some state in S.

Your new set of states is the set of states in S’, plus the states
reachable from S’ by following zero or more ε-transitions.

So What?

Each intuition of nondeterminism is useful in a different
setting:

Perfect guessing is a great way to think about how to
design a machine.

Massive parallelism is a great way to test machines –
and has nice theoretical implications.

Nondeterministic machines may not be feasible, but
they give a great basis for interesting questions:

Can any problem that can be solved by a
nondeterministic machine be solved by a deterministic
machine?

Can any problem that can be solved by a
nondeterministic machine be solved efficiently by a
deterministic machine?

The answers vary from automaton to automaton.

Designing NFAs

Designing NFAs

Embrace the nondeterminism!

Good model: Guess-and-check:

Is there some information that you'd really
like to have? Have the machine
nondeterministically guess that information.

Then, have the machine deterministically
check that the choice was correct.

The guess phase corresponds to trying lots of
different options.

The check phase corresponds to filtering out
bad guesses or wrong options.

Guess-and-Check

L = { w ∈ {0, 1}* | w ends in 010 or 101 }

Guess-and-Check

L = { w ∈ {0, 1}* | w ends in 010 or 101 }

start
0

1

11

1

1

1

0

0

0

0

0

0

1

Guess-and-Check

L = { w ∈ {0, 1}* | w ends in 010 or 101 }

Nondeterministically guess when the end of the
string is coming up.

Deterministically check whether you were correct.
start

1

0

1

1 0

0

Σ

Guess-and-Check

L = { w ∈ {0, 1}* | w ends in 010 or 101 }

start

1

0

1

1 0

0

Σ
1 0 1 0 1 0

Guess-and-Check

L = { w ∈ {0, 1}* | w ends in 010 or 101 }

1 0 1 0 1 0start

1

0

10

Σ

1 0

Guess-and-Check

L = { w ∈ {0, 1}* | w ends in 010 or 101 }

1 0 1 0 1 0start

1

0

10

Σ

1 0

Guess-and-Check

L = { w ∈ {0, 1}* | w ends in 010 or 101 }

1 0 1 0 1 0start

1

0

10

Σ

1 0

Guess-and-Check

L = { w ∈ {0, 1}* | w ends in 010 or 101 }

1 0 1 0 1 0start

1

0

10

Σ

1 0

Guess-and-Check

L = { w ∈ {0, 1}* | w ends in 010 or 101 }

1 0 1 0 1 0start

1

0

10

Σ

1 0

Guess-and-Check

L = { w ∈ {0, 1}* | w ends in 010 or 101 }

1 0 1 0 1 0start

1

0

10

Σ

1 0

Guess-and-Check

L = { w ∈ {0, 1}* | w ends in 010 or 101 }

1 0 1 0 1 0start

1

0

10

Σ

1 0

Guess-and-Check

L = { w ∈ {0, 1}* | w ends in 010 or 101 }

1 0 1 0 1 0start

1

0

10

Σ

1 0

Guess-and-Check

L = { w ∈ {0, 1}* | w ends in 010 or 101 }

1 0 1 0 1 0start

1

0

10

Σ

1 0

Guess-and-Check

L = { w ∈ {a, b, c}* | at least one of a, b, or c is not in w }

Guess-and-Check

L = { w ∈ {a, b, c}* | at least one of a, b, or c is not in w }

a

a

a

aa

a, b

a, c

b, c

b

b

b

b

b

c

c

c c

Σ

start

Guess-and-Check

L = { w ∈ {a, b, c}* | at least one of a, b, or c is not in w }

Nondeterministically guess
which character is missing.

Deterministically check
whether that character is

indeed missing.

start

a, b

a, c

b, c

ε

ε

ε

Guess-and-Check

L = { w ∈ {a, b, c}* | at least one of a, b, or c is not in w }

a c c a c cstart

a, b

a, c

b, c

ε

ε

ε

Guess-and-Check

L = { w ∈ {a, b, c}* | at least one of a, b, or c is not in w }

a c c a c cstart

a, b

a, c

b, c

ε

ε

ε

Guess-and-Check

L = { w ∈ {a, b, c}* | at least one of a, b, or c is not in w }

a c c a c cstart

a, b

a, c

b, c

ε

ε

ε

Guess-and-Check

L = { w ∈ {a, b, c}* | at least one of a, b, or c is not in w }

a c c a c cstart

a, b

a, c

b, c

ε

ε

ε

Guess-and-Check

L = { w ∈ {a, b, c}* | at least one of a, b, or c is not in w }

a c c a c cstart

a, b

a, c

b, c

ε

ε

ε

Guess-and-Check

L = { w ∈ {a, b, c}* | at least one of a, b, or c is not in w }

a c c a c cstart

a, b

a, c

b, c

ε

ε

ε

Guess-and-Check

L = { w ∈ {a, b, c}* | at least one of a, b, or c is not in w }

a c c a c cstart

a, b

a, c

b, c

ε

ε

ε

Guess-and-Check

L = { w ∈ {a, b, c}* | at least one of a, b, or c is not in w }

a c c a c cstart

a, b

a, c

b, c

ε

ε

ε

Time out for Announcements

Midterm and Pset

• Congratulations on finishing the
midterm!

• We’ll have this returned to you on
Monday.

• Problem Set 4 is due next Thursday.

Just how powerful are NFAs?

NFAs and DFAs

Any language that can be accepted by a
DFA can be accepted by an NFA.

Why?

Every DFA essentially already is an NFA!

Question: Can any language accepted by
an NFA also be accepted by a DFA?

Surprisingly, the answer is yes!

Tabular DFAs

q0

q1

q2

q3

0 1

q0q0 q1 q2 q3q3

start

Σ1

10

0

01

Tabular DFAs

q0q0 q1 q2 q3

q0

q1

q2

q3

0 1
q0q1

q2q3

q3 q3

q0q3

q3

start

1

1

10

0

0

Σ

Tabular DFAs

*q0

q1

q2

*q3

0 1
q0q1

q2q3

q3 q3

q0q3

q0q0 q1 q2 q3q3

start

1

10

0

Σ

1 0

Tabular DFAs

*q0

q1

q2

*q3

0 1
q0q1

q2q3

q3 q3

q0q3

These stars indicate
accepting states.

q0q0 q1 q2 q3q3

start

1

10

0

Σ

1 0

Tabular DFAs

*q0

q1

q2

*q3

0 1
q0q1

q2q3

q3 q3

q0q3

Since this is the first row,
it's the start state.

q0q0 q1 q2 q3q3

start

1

10

0

Σ

1 0

Tabular DFAs

*q0

q1

q2

*q3

0 1
q0q1

q2q3

q3 q3

q0q3

Question to ponder: Why
isn’t there a column here

for Σ?

q0q0 q1 q2 q3q3

start

1

10

0

Σ

1 0

My Turn to Code Things Up!
int kTransitionTable[kNumStates][kNumSymbols] = {

{0, 0, 1, 3, 7, 1, …},

…

};

bool kAcceptTable[kNumStates] = {

false,

true,

true,

…

};

bool SimulateDFA(string input) {

int state = 0;

for (char ch: input) {

state = kTransitionTable[state][ch];

}

return kAcceptTable[state];

}

Thought Experiment:

How would you simulate an NFA in
software?

q₃q₃q₂q₁ q₂q₀ q₁q₀ q₃a b a

Σ

start

q₃q₃q₂q₁ q₂q₀ q₁q₀ q₃

a b a ab

a b a

Σ

start

q₃q₃q₂q₁ q₂q₀ q₁q₀ q₃

a b a ab

a b a

Σ

start

q₃q₃q₂q₁ q₂q₀ q₁q₀ q₃

a b a ab

a b a

Σ

start

q₃q₃q₂q₁ q₂q₀ q₁q₀ q₃

a b a ab

a b a

Σ

start

q₃q₃q₂q₁ q₂q₀ q₁q₀ q₃

a b a ab

a b a

Σ

start

q₃q₃q₂q₁ q₂q₀ q₁q₀ q₃

a b a ab

a b a

Σ

start

q₃q₃q₂q₁ q₂q₀ q₁q₀ q₃

a b a ab

a b a

Σ

start

q₃q₃q₂q₁ q₂q₀ q₁q₀ q₃

a b a ab

a b a

Σ

start

q₃q₃q₂q₁ q₂q₀ q₁q₀ q₃

a b a ab

a b a

Σ

start

q₃q₃q₂q₁ q₂q₀ q₁q₀ q₃

a b a ab

a b a

Σ

start

q₃q₃q₂q₁ q₂q₀ q₁q₀ q₃

a b a ab

a b a

Σ

start

q₃q₃q₂q₁ q₂q₀ q₁q₀ q₃

a b a ab

a b a

Σ

start

q₃q₃q₂q₁ q₂q₀ q₁q₀ q₃

a b a ab

a b a

Σ

start

q₃q₃q₂q₁ q₂q₀ q₁q₀ q₃

a b a ab

a b a

Σ

start

q₃q₃q₂q₁ q₂q₀ q₁q₀ q₃

a? ?? ?… ? ? ? …?

a b a

Σ

start

q₃q₃q₂q₁ q₂q₀ q₁q₀ q₃

a? ?? ?… ? ? ? …?

a b a

Σ

start

q₃q₃q₂q₁ q₂q₀ q₁q₀ q₃

a? ?? ?… ? ? ? …?

a b a

Σ

start

q₃q₃q₂q₁ q₂q₀ q₁q₀ q₃

a? ?? ?… ? ? ? …?

a b a

Σ

start

q₃q₃q₂q₁ q₂q₀ q₁q₀ q₃

a? ?? ?… ? ? ? …?

a b a

Σ

start

q₃q₃q₂q₁ q₂q₀ q₁q₀ q₃

a? ?? ?… ? ? ? …?

a b a

Σ

start

q₃q₃q₂q₁ q₂q₀ q₁q₀ q₃

{q₀}

a
{q₀, q₁}

a b a

Σ

start

q₃q₃q₂q₁ q₂q₀ q₁q₀ q₃

{q₀}

a
{q₀, q₁}

b

a b a

Σ

start

q₃q₃q₂q₁ q₂q₀ q₁q₀ q₃

{q₀}

a
{q₀, q₁}

b

a b a

Σ

start

q₃q₃q₂q₁ q₂q₀ q₁q₀ q₃

{q₀}

a
{q₀, q₁}

b

a b a

Σ

start

q₃q₃q₂q₁ q₂q₀ q₁q₀ q₃

{q₀}

a
{q₀, q₁}

b
{q₀}

a b a

Σ

start

q₃q₃q₂q₁ q₂q₀ q₁q₀ q₃

{q₀}

a
{q₀, q₁}

b
{q₀}

a b a

Σ

start

q₃q₃q₂q₁ q₂q₀ q₁q₀ q₃

{q₀}

a
{q₀, q₁}

b
{q₀}

a b a

Σ

start

q₃q₃q₂q₁ q₂q₀ q₁q₀ q₃

{q₀}

a
{q₀, q₁}

{q₀, q₁}

b
{q₀}

a b a

Σ

start

q₃q₃q₂q₁ q₂q₀ q₁q₀ q₃

{q₀}

a
{q₀, q₁}

{q₀, q₁}

b
{q₀}

a b a

Σ

start

q₃q₃q₂q₁ q₂q₀ q₁q₀ q₃

{q₀}

a
{q₀, q₁}

{q₀, q₁}

b
{q₀}

a b a

Σ

start

q₃q₃q₂q₁ q₂q₀ q₁q₀ q₃

{q₀}

a
{q₀, q₁}

{q₀, q₁}

b
{q₀}

a b a

Σ

start

q₃q₃q₂q₁ q₂q₀ q₁q₀ q₃

{q₀}

a
{q₀, q₁}

{q₀, q₁}

b
{q₀}

a b a

Σ

start

q₃q₃q₂q₁ q₂q₀ q₁q₀ q₃

{q₀}

a
{q₀, q₁}

{q₀, q₁}

b
{q₀}

a b a

Σ

start

q₃q₃q₂q₁ q₂q₀ q₁q₀ q₃

{q₀}

a
{q₀, q₁}

{q₀, q₁}

b
{q₀}

a b a

Σ

start

q₃q₃q₂q₁ q₂q₀ q₁q₀ q₃

{q₀}

a
{q₀, q₁}

{q₀, q₁} {q₀, q₁}

b
{q₀}

a b a

Σ

start

q₃q₃q₂q₁ q₂q₀ q₁q₀ q₃

{q₀}

a
{q₀, q₁}

{q₀, q₁} {q₀, q₁}

b
{q₀}

a b a

Σ

start

q₃q₃q₂q₁ q₂q₀ q₁q₀ q₃

{q₀}

a
{q₀, q₁}

{q₀, q₁} {q₀, q₁}

b
{q₀}

a b a

Σ

start

q₃q₃q₂q₁ q₂q₀ q₁q₀ q₃

{q₀}

a
{q₀, q₁}

{q₀, q₁} {q₀, q₁}

b
{q₀}

a b a

Σ

start

q₃q₃q₂q₁ q₂q₀ q₁q₀ q₃

{q₀}

a
{q₀, q₁}

{q₀, q₁} {q₀, q₁}

b
{q₀}

a b a

Σ

start

q₃q₃q₂q₁ q₂q₀ q₁q₀ q₃

{q₀}

a
{q₀, q₁}

{q₀, q₁} {q₀, q₁}

b
{q₀}

{q₀, q₂}

a b a

Σ

start

q₃q₃q₂q₁ q₂q₀ q₁q₀ q₃

{q₀}

a
{q₀, q₁}

{q₀, q₁} {q₀, q₁}

b
{q₀}

{q₀, q₂}

a b a

Σ

start

q₃q₃q₂q₁ q₂q₀ q₁q₀ q₃

{q₀}

a
{q₀, q₁}

{q₀, q₁} {q₀, q₁}

{q₀, q₂}

b
{q₀}

{q₀, q₂}

a b a

Σ

start

q₃q₃q₂q₁ q₂q₀ q₁q₀ q₃

{q₀}

a
{q₀, q₁}

{q₀, q₁} {q₀, q₁}

{q₀, q₂}

b
{q₀}

{q₀, q₂}

a b a

Σ

start

q₃q₃q₂q₁ q₂q₀ q₁q₀ q₃

{q₀}

a
{q₀, q₁}

{q₀, q₁} {q₀, q₁}

{q₀, q₂}

b
{q₀}

{q₀, q₂}

a b a

Σ

start

q₃q₃q₂q₁ q₂q₀ q₁q₀ q₃

{q₀}

a
{q₀, q₁}

{q₀, q₁} {q₀, q₁}

{q₀, q₂}

b
{q₀}

{q₀, q₂}

a b a

Σ

start

q₃q₃q₂q₁ q₂q₀ q₁q₀ q₃

{q₀}

a
{q₀, q₁}

{q₀, q₁} {q₀, q₁}

{q₀, q₂}

b
{q₀}

{q₀, q₂}

a b a

Σ

start

q₃q₃q₂q₁ q₂q₀ q₁q₀ q₃

{q₀}

a
{q₀, q₁}

{q₀, q₁} {q₀, q₁}

{q₀, q₂}

b
{q₀}

{q₀, q₂}

a b a

Σ

start

q₃q₃q₂q₁ q₂q₀ q₁q₀ q₃

{q₀}

a
{q₀, q₁}

{q₀, q₁} {q₀, q₁}

{q₀, q₂} {q₀, q₁, q₃}

b
{q₀}

{q₀, q₂}

a b a

Σ

start

q₃q₃q₂q₁ q₂q₀ q₁q₀ q₃

{q₀}

a
{q₀, q₁}

{q₀, q₁} {q₀, q₁}

{q₀, q₂} {q₀, q₁, q₃}

b
{q₀}

{q₀, q₂}

a b a

Σ

start

q₃q₃q₂q₁ q₂q₀ q₁q₀ q₃

{q₀}

a
{q₀, q₁}

{q₀, q₁} {q₀, q₁}

{q₀, q₂} {q₀, q₁, q₃}

b
{q₀}

{q₀, q₂}

a b a

Σ

start

q₃q₃q₂q₁ q₂q₀ q₁q₀ q₃

{q₀}

a
{q₀, q₁}

{q₀, q₁} {q₀, q₁}

{q₀, q₂} {q₀, q₁, q₃}

b
{q₀}

{q₀, q₂}

a b a

Σ

start

q₃q₃q₂q₁ q₂q₀ q₁q₀ q₃

{q₀}

a
{q₀, q₁}

{q₀, q₁} {q₀, q₁}

{q₀, q₂} {q₀, q₁, q₃}

b
{q₀}

{q₀, q₂}

a b a

Σ

start

q₃q₃q₂q₁ q₂q₀ q₁q₀ q₃

{q₀}

a
{q₀, q₁}

{q₀, q₁} {q₀, q₁}

{q₀, q₂} {q₀, q₁, q₃}

b
{q₀}

{q₀, q₂}

a b a

Σ

start

q₃q₃q₂q₁ q₂q₀ q₁q₀ q₃

{q₀}

a
{q₀, q₁}

{q₀, q₁} {q₀, q₁}

{q₀, q₂} {q₀, q₁, q₃}

b
{q₀}

{q₀, q₂}

a b a

Σ

start

q₃q₃q₂q₁ q₂q₀ q₁q₀ q₃

{q₀}

a
{q₀, q₁}

{q₀, q₁} {q₀, q₁}

{q₀, q₂} {q₀, q₁, q₃}

b
{q₀}

{q₀, q₂}

{q₀}

a b a

Σ

start

q₃q₃q₂q₁ q₂q₀ q₁q₀ q₃

{q₀}

a
{q₀, q₁}

{q₀, q₁} {q₀, q₁}

{q₀, q₂} {q₀, q₁, q₃}

b
{q₀}

{q₀, q₂}

{q₀}

a b a

Σ

start

q₃q₃q₂q₁ q₂q₀ q₁q₀ q₃

{q₀}

a
{q₀, q₁}

{q₀, q₁} {q₀, q₁}

{q₀, q₂} {q₀, q₁, q₃}

{q₀, q₁, q₃}

b
{q₀}

{q₀, q₂}

{q₀}

a b a

Σ

start

q₃q₃q₂q₁ q₂q₀ q₁q₀ q₃

{q₀}

a
{q₀, q₁}

{q₀, q₁} {q₀, q₁}

{q₀, q₂} {q₀, q₁, q₃}

{q₀, q₁, q₃}

b
{q₀}

{q₀, q₂}

{q₀}

a b a

Σ

start

q₃q₃q₂q₁ q₂q₀ q₁q₀ q₃

{q₀}

a
{q₀, q₁}

{q₀, q₁} {q₀, q₁}

{q₀, q₂} {q₀, q₁, q₃}

{q₀, q₁, q₃}

b
{q₀}

{q₀, q₂}

{q₀}

a b a

Σ

start

q₃q₃q₂q₁ q₂q₀ q₁q₀ q₃

{q₀}

a
{q₀, q₁}

{q₀, q₁} {q₀, q₁}

{q₀, q₂} {q₀, q₁, q₃}

{q₀, q₁, q₃}

b
{q₀}

{q₀, q₂}

{q₀}

a b a

Σ

start

q₃q₃q₂q₁ q₂q₀ q₁q₀ q₃

{q₀}

a
{q₀, q₁}

{q₀, q₁} {q₀, q₁}

{q₀, q₂} {q₀, q₁, q₃}

{q₀, q₁, q₃}

b
{q₀}

{q₀, q₂}

{q₀}

a b a

Σ

start

q₃q₃q₂q₁ q₂q₀ q₁q₀ q₃

{q₀}

a
{q₀, q₁}

{q₀, q₁} {q₀, q₁}

{q₀, q₂} {q₀, q₁, q₃}

{q₀, q₁, q₃}

b
{q₀}

{q₀, q₂}

{q₀}

a b a

Σ

start

q₃q₃q₂q₁ q₂q₀ q₁q₀ q₃

{q₀}

a
{q₀, q₁}

{q₀, q₁} {q₀, q₁}

{q₀, q₂} {q₀, q₁, q₃}

{q₀, q₁, q₃} {q₀, q₁}

b
{q₀}

{q₀, q₂}

{q₀}

a b a

Σ

start

q₃q₃q₂q₁ q₂q₀ q₁q₀ q₃

{q₀}

a
{q₀, q₁}

{q₀, q₁} {q₀, q₁}

{q₀, q₂} {q₀, q₁, q₃}

{q₀, q₁, q₃} {q₀, q₁}

b
{q₀}

{q₀, q₂}

{q₀}

a b a

Σ

start

q₃q₃q₂q₁ q₂q₀ q₁q₀ q₃

{q₀}

a
{q₀, q₁}

{q₀, q₁} {q₀, q₁}

{q₀, q₂} {q₀, q₁, q₃}

{q₀, q₁, q₃} {q₀, q₁}

b
{q₀}

{q₀, q₂}

{q₀}

a b a

Σ

start

q₃q₃q₂q₁ q₂q₀ q₁q₀ q₃

{q₀}

a
{q₀, q₁}

{q₀, q₁} {q₀, q₁}

{q₀, q₂} {q₀, q₁, q₃}

{q₀, q₁, q₃} {q₀, q₁}

b
{q₀}

{q₀, q₂}

{q₀}

a b a

Σ

start

q₃q₃q₂q₁ q₂q₀ q₁q₀ q₃

{q₀}

a
{q₀, q₁}

{q₀, q₁} {q₀, q₁}

{q₀, q₂} {q₀, q₁, q₃}

{q₀, q₁, q₃} {q₀, q₁}

b
{q₀}

{q₀, q₂}

{q₀}

a b a

Σ

start

q₃q₃q₂q₁ q₂q₀ q₁q₀ q₃

{q₀}

a
{q₀, q₁}

{q₀, q₁} {q₀, q₁}

{q₀, q₂} {q₀, q₁, q₃}

{q₀, q₁, q₃} {q₀, q₁}

b
{q₀}

{q₀, q₂}

{q₀}

a b a

Σ

start

q₃q₃q₂q₁ q₂q₀ q₁q₀ q₃

{q₀}

a
{q₀, q₁}

{q₀, q₁} {q₀, q₁}

{q₀, q₂} {q₀, q₁, q₃}

{q₀, q₁, q₃} {q₀, q₁}

b
{q₀}

{q₀, q₂}

{q₀}

a b a

Σ

start

q₃q₃q₂q₁ q₂q₀ q₁q₀ q₃

{q₀}

a
{q₀, q₁}

{q₀, q₁} {q₀, q₁}

{q₀, q₂} {q₀, q₁, q₃}

{q₀, q₁, q₃} {q₀, q₁}

b
{q₀}

{q₀, q₂}

{q₀}

{q₀, q₂}

a b a

Σ

start

q₃q₃q₂q₁ q₂q₀ q₁q₀ q₃

{q₀}

a
{q₀, q₁}

{q₀, q₁} {q₀, q₁}

{q₀, q₂} {q₀, q₁, q₃}

{q₀, q₁, q₃} {q₀, q₁}

b
{q₀}

{q₀, q₂}

{q₀}

{q₀, q₂}

a b a

Σ

start

q₃q₃q₂q₁ q₂q₀ q₁q₀ q₃

{q₀}

a b
{q₀, q₁} {q₀}

{q₀, q₁} {q₀, q₁} {q₀, q₂}

{q₀, q₂} {q₀, q₁, q₃} {q₀}

{q₀, q₁, q₃} {q₀, q₁} {q₀, q₂}

{q₀} {q₀, q₁}

{q₀, q₂}

start

{q₀, q₁,q₃}

a b a

Σ

start

q₃q₃q₂q₁ q₂q₀ q₁q₀ q₃

{q₀}

a b
{q₀, q₁} {q₀}

{q₀, q₁} {q₀, q₁} {q₀, q₂}

{q₀, q₂} {q₀, q₁, q₃} {q₀}

{q₀, q₁, q₃} {q₀, q₁} {q₀, q₂}

{q₀} {q₀, q₁}

{q₀, q₂}

start

{q₀, q₁,q₃}

a b a

Σ

start

q₃q₃q₂q₁ q₂q₀ q₁q₀ q₃

{q₀}

a b
{q₀, q₁} {q₀}

{q₀, q₁} {q₀, q₁} {q₀, q₂}

{q₀, q₂} {q₀, q₁, q₃} {q₀}

*{q₀, q₁, q₃} {q₀, q₁} {q₀, q₂}

{q₀} {q₀, q₁}

{q₀, q₂}

start

{q₀, q₁,q₃}

a b a

Σ

start

q₃q₃q₂q₁ q₂q₀ q₁q₀ q₃

{q₀}

a b
{q₀, q₁} {q₀}

{q₀, q₁} {q₀, q₁} {q₀, q₂}

{q₀, q₂} {q₀, q₁, q₃} {q₀}

*{q₀, q₁, q₃} {q₀, q₁} {q₀, q₂}

{q₀} {q₀, q₁}

{q₀, q₂}

start

{q₀, q₁,q₃}

a b a

Σ

start

q₃q₃q₂q₁ q₂q₀ q₁q₀ q₃

{q₀}

a b
{q₀, q₁} {q₀}

{q₀, q₁} {q₀, q₁} {q₀, q₂}

{q₀, q₂} {q₀, q₁, q₃} {q₀}

*{q₀, q₁, q₃} {q₀, q₁} {q₀, q₂}

{q₀} {q₀, q₁}

{q₀, q₂}

start

{q₀, q₁,q₃}

a b a

Σ

start

q₃q₃q₂q₁ q₂q₀ q₁q₀ q₃

{q₀} {q₀, q₁}

{q₀, q₂}

start

{q₀, q₁,q₃}

a b a a b a

a b a

Σ

start

q₃q₃q₂q₁ q₂q₀ q₁q₀ q₃

{q₀} {q₀, q₁}

{q₀, q₂}

start

{q₀, q₁,q₃}

a b a a b a

a b a

Σ

start

q₃q₃q₂q₁ q₂q₀ q₁q₀ q₃

{q₀} {q₀, q₁}

{q₀, q₂}

start

{q₀, q₁,q₃}

a b a a b a

a b a

Σ

start

q₃q₃q₂q₁ q₂q₀ q₁q₀ q₃

{q₀} {q₀, q₁}

{q₀, q₂}

start

{q₀, q₁,q₃}

a b a a b a

a b a

Σ

start

q₃q₃q₂q₁ q₂q₀ q₁q₀ q₃

{q₀} {q₀, q₁}

{q₀, q₂}

start

{q₀, q₁,q₃}

a b a a b a

a b a

Σ

start

q₃q₃q₂q₁ q₂q₀ q₁q₀ q₃

{q₀} {q₀, q₁}

{q₀, q₂}

start

{q₀, q₁,q₃}

a b a a b a

a b a

Σ

start

q₃q₃q₂q₁ q₂q₀ q₁q₀ q₃

{q₀} {q₀, q₁}

{q₀, q₂}

start

{q₀, q₁,q₃}

a b a a b a

a b a

Σ

start

q₃q₃q₂q₁ q₂q₀ q₁q₀ q₃

{q₀} {q₀, q₁}

{q₀, q₂}

start

{q₀, q₁,q₃}

a b a a b a

a b a

Σ

start

q₃q₃q₂q₁ q₂q₀ q₁q₀ q₃

{q₀} {q₀, q₁}

{q₀, q₂}

start

{q₀, q₁,q₃}

a b a a b a

a b a

Σ

start

Some Caveats

Question: what about ε-transitions?

Answer: always include any states you can reach
by following ε-transitions.

Question: what happens if there are no
transitions to follow from a set of states for
the character you’re trying to fill in?

Answer: then the set of states you can
reach is the empty set!

Example included in the appendix of this
lecture showing this construction with both
of these scenarios.

The Subset Construction

• This construction for transforming an NFA into a DFA is called the
subset construction (or sometimes the powerset
construction).

• Each state in the DFA is associated with a set of states in the NFA.

• The start state in the DFA corresponds to the start state of the
NFA, plus all states reachable via ε-transitions.

• If a state q in the DFA corresponds to a set of states S in the NFA,
then the transition from state q on a character a is found as
follows:

• Let S' be the set of states in the NFA that can be reached by
following a transition labeled a from any of the states in S. (This
set may be empty.)

• Let S'' be the set of states in the NFA reachable from some state
in S' by following zero or more epsilon transitions.

• The state q in the DFA transitions on a to a DFA state
corresponding to the set of states S''.

• Read Sipser for a formal account.

The Subset Construction

For the purposes of this class, we won’t ask
you to actually perform the subset
construction.

Hopefully though, you’ve been convinced
that, in principle, you could follow this
procedure to turn any NFA into a DFA.

The Subset Construction

In converting an NFA to a DFA, the DFA's
states correspond to sets of NFA states.

Useful fact: |℘(S)| = 2|S| for any finite set
S.

In the worst-case, the construction can
result in a DFA that is exponentially larger
than the original NFA.

Question to ponder: Can you find a family
of languages that have NFAs of size n, but
no DFAs of size less than 2n?

A language L is called a regular language
if there exists a DFA D such that ℒ(D) = L.

An Important Result

Theorem: A language L is regular iff there

is some NFA N such that ℒ(N) = L.

Proof Sketch: If L is regular, there exists

some DFA for it, which we can easily

convert into an NFA.

If L is accepted by some NFA, we can use
the subset construction to convert it into a

DFA that accepts the same language, so L is
regular. ■

An Important Result

Theorem: A language L is regular iff there

is some NFA N such that ℒ(N) = L.

Proof Sketch: If L is regular, there exists

some DFA for it, which we can easily

convert into an NFA.

If L is accepted by some NFA, we can use
the subset construction to convert it into a

DFA that accepts the same language, so L is
regular. ■

An Important Result

Theorem: A language L is regular iff there

is some NFA N such that ℒ(N) = L.

Proof Sketch: If L is regular, there exists

some DFA for it, which we can easily

convert into an NFA.

If L is accepted by some NFA, we can use
the subset construction to convert it into a

DFA that accepts the same language, so L is
regular. ■

An Important Result

Theorem: A language L is regular iff there

is some NFA N such that ℒ(N) = L.

Proof Sketch: If L is regular, there exists

some DFA for it, which we can easily

convert into an NFA.

If L is accepted by some NFA, we can use
the subset construction to convert it into a

DFA that accepts the same language, so L is
regular. ■

An Important Result

Theorem: A language L is regular iff there

is some NFA N such that ℒ(N) = L.

Proof Sketch: If L is regular, there exists

some DFA for it, which we can easily

convert into an NFA.

If L is accepted by some NFA, we can use
the subset construction to convert it into a

DFA that accepts the same language, so L is
regular. ■ ■

Why This Matters

We now have two perspectives on regular
languages:

Regular languages are languages accepted
by DFAs.

Regular languages are languages accepted
by NFAs.

We can now reason about the regular
languages in two different ways.

Properties of Regular Languages

The Complement of a Language

Given a language L ⊆ Σ*, the complement of

that language (denoted 𝐿) is the language of all
strings in Σ* that aren't in L.

Formally:

𝐿 = Σ* - L

The Complement of a Language

Given a language L ⊆ Σ*, the complement of

that language (denoted 𝐿) is the language of all
strings in Σ* that aren't in L.

Formally:

𝐿 = Σ* - L

Σ*

The Complement of a Language

Given a language L ⊆ Σ*, the complement of

that language (denoted 𝐿) is the language of all
strings in Σ* that aren't in L.

Formally:

𝐿 = Σ* - L

Σ*

L

The Complement of a Language

Given a language L ⊆ Σ*, the complement of

that language (denoted 𝐿) is the language of all
strings in Σ* that aren't in L.

Formally:

𝐿 = Σ* - L

L 𝐿

Σ*

The Complement of a Language

Given a language L ⊆ Σ*, the complement of

that language (denoted 𝐿) is the language of all
strings in Σ* that aren't in L.

Formally:

𝐿 = Σ* - L

L 𝐿

Σ*

Good proofwriting exercise:
prove L̿ = L for any language

L.

Complementing Regular Languages

L = { w ∈ {a, b}* | w contains aa as a substring }

q0 q1 q2

𝐿 = { w ∈ {a, b}* | w does not contain aa as a substring }

q0 q1 q2

a

Σ

start
a

b

b

a

Σ

start
a

b

b

Complementing Regular Languages

L = { w ∈ {a, *, /}* | w doesn't represent a C-style
comment }

q1 q2 q3 q4q0

q5

/

*

a

/, a

a, *

/ *

Σ

*
a, /

Σ

start

Complementing Regular Languages

L = { w ∈ {a, *, /}* | w doesn't represent a C-style
comment }

q1 q2 q3 q4q0

q5q5

q3q2q1q0
start /

*

a

/, a

a, *

/ *

Σ

a, /

Σ

Closure Properties

Theorem: If L is a regular language, then 𝐿 is also
a regular language.

As a result, we say that the regular languages are
closed under complementation.

All languages

Regular languages

L

𝐿

Question to ponder: are the
nonregular languages closed

under complementation?

The Union of Two Languages

If L1 and L2 are languages over the alphabet Σ, the
language L1 ∪ L2 is the language of all strings in at
least one of the two languages.

If L1 and L2 are regular languages, is L1 ∪ L2?

The Union of Two Languages

Machine for L1

Machine for L2

If L1 and L2 are languages over the alphabet Σ, the
language L1 ∪ L2 is the language of all strings in at
least one of the two languages.

If L1 and L2 are regular languages, is L1 ∪ L2?

The Union of Two Languages

Machine for L1

Machine for L2

If L1 and L2 are languages over the alphabet Σ, the
language L1 ∪ L2 is the language of all strings in at
least one of the two languages.

If L1 and L2 are regular languages, is L1 ∪ L2?

If L1 and L2 are languages over the alphabet Σ, the
language L1 ∪ L2 is the language of all strings in at
least one of the two languages.

If L1 and L2 are regular languages, is L1 ∪ L2?

The Union of Two Languages

Machine for L1

Machine for L2

The Union of Two Languages

If L1 and L2 are languages over the alphabet Σ, the
language L1 ∪ L2 is the language of all strings in at
least one of the two languages.

If L1 and L2 are regular languages, is L1 ∪ L2?

Machine for L1

Machine for L2Machine for
L1 ∪ L2

Question to
ponder: where have

you seen this idea
before?

The Intersection of Two Languages

If L1 and L2 are languages over Σ, then L1 ∩ L2 is the
language of strings in both L1 and L2.

Question: If L1 and L2 are regular, is L1 ∩ L2 regular
as well?

If L1 and L2 are languages over Σ, then L1 ∩ L2 is the
language of strings in both L1 and L2.

Question: If L1 and L2 are regular, is L1 ∩ L2 regular
as well?

L1

The Intersection of Two Languages

L2

L1 L2

The Intersection of Two Languages

If L1 and L2 are languages over Σ, then L1 ∩ L2 is the
language of strings in both L1 and L2.

Question: If L1 and L2 are regular, is L1 ∩ L2 regular
as well?

L1 ∪ L2

The Intersection of Two Languages

If L1 and L2 are languages over Σ, then L1 ∩ L2 is the
language of strings in both L1 and L2.

Question: If L1 and L2 are regular, is L1 ∩ L2 regular
as well?

L1 ∪ L2

The Intersection of Two Languages

If L1 and L2 are languages over Σ, then L1 ∩ L2 is the
language of strings in both L1 and L2.

Question: If L1 and L2 are regular, is L1 ∩ L2 regular
as well?

Hey, it's De
Morgan's laws!

Concatenation

String Concatenation

If w ∈ Σ* and x ∈ Σ*, the concatenation of w and x,
denoted wx, is the string formed by tacking all the
characters of x onto the end of w.

Example: if w = quo and x = kka, the concatenation
wx = quokka.

Analogous to the + operator for strings in many
programming languages.

Some facts about concatenation:

The empty string ε is the identity element for
concatenation:

wε = εw = w

Concatenation is associative:

wxy = w(xy) = (wx)y

Concatenation

The concatenation of two languages L₁ and
L₂ over the alphabet Σ is the language

L₁L₂ = { wx ∈ Σ* | w ∈ L₁ ∧ x ∈ L₂ }

=Two views of L₁L₂:

The set of all strings that can be made by
concatenating a string in L₁ with a string in
L₂.

The set of strings that can be split into two
pieces: a piece from L₁ and a piece from L₂.

Conceptually similar to the Cartesian product
of two sets, only with strings.

Concatenation Example

Let Σ = { a, b, …, z, A, B, …, Z } and consider these
languages over Σ:

Noun = { Puppy, Rainbow, Whale, … }

Verb = { Hugs, Juggles, Loves, … }

The = { The }

The language TheNounVerbTheNoun is

{ ThePuppyHugsTheWhale,

TheWhaleLovesTheRainbow,

TheRainbowJugglesTheRainbow, … }

Concatenation

The concatenation of two languages L₁ and L₂
over the alphabet Σ is the language

L₁L₂ = { wx ∈ Σ* | w ∈ L₁ ∧ x ∈ L₂ }

Two views of L₁L₂:

The set of all strings that can be made by
concatenating a string in L₁ with a string in L₂.

The set of strings that can be split into two pieces:
a piece from L₁ and a piece from L₂.

Concatenating Regular Languages

If L1 and L2 are regular languages, is L1L2?

Intuition – can we split a string w into two strings
xy such that x ∈ L1 and y ∈ L2?

Idea:

Run a DFA/NFA for L1 on w.

Whenever it reaches an accepting state, optionally
hand the rest of w to a DFA/NFA for L2.

If the automaton for L2 accepts the rest, w ∈ L₁L₂.

If the automaton for L2 rejects the remainder, the
split was incorrect.

Concatenating Regular Languages

If L1 and L2 are regular languages, is L1L2?

Intuition – can we split a string w into two strings
xy such that x ∈ L1 and y ∈ L2?

Idea:

Run a DFA/NFA for L1 on w.

Whenever it reaches an accepting state, optionally
hand the rest of w to a DFA/NFA for L2.

If the automaton for L2 accepts the rest, w ∈ L₁L₂.

If the automaton for L2 rejects the remainder, the
split was incorrect.

Machine for L1 Machine for L2

Concatenating Regular Languages

If L1 and L2 are regular languages, is L1L2?

Intuition – can we split a string w into two strings
xy such that x ∈ L1 and y ∈ L2?

Idea:

Run a DFA/NFA for L1 on w.

Whenever it reaches an accepting state, optionally
hand the rest of w to a DFA/NFA for L2.

If the automaton for L2 accepts the rest, w ∈ L₁L₂.

If the automaton for L2 rejects the remainder, the
split was incorrect.

b o o k k e e ep r

Machine for L1 Machine for L2

Concatenating Regular Languages

If L1 and L2 are regular languages, is L1L2?

Intuition – can we split a string w into two strings
xy such that x ∈ L1 and y ∈ L2?

Idea:

Run a DFA/NFA for L1 on w.

Whenever it reaches an accepting state, optionally
hand the rest of w to a DFA/NFA for L2.

If the automaton for L2 accepts the rest, w ∈ L₁L₂.

If the automaton for L2 rejects the remainder, the
split was incorrect.

b o o k k e e ep r

Machine for L1 Machine for L2

Concatenating Regular Languages

If L1 and L2 are regular languages, is L1L2?

Intuition – can we split a string w into two strings
xy such that x ∈ L1 and y ∈ L2?

Idea:

Run a DFA/NFA for L1 on w.

Whenever it reaches an accepting state, optionally
hand the rest of w to a DFA/NFA for L2.

If the automaton for L2 accepts the rest, w ∈ L₁L₂.

If the automaton for L2 rejects the remainder, the
split was incorrect.

b o o k k e e ep r

Machine for L1 Machine for L2

Concatenating Regular Languages

If L1 and L2 are regular languages, is L1L2?

Intuition – can we split a string w into two strings
xy such that x ∈ L1 and y ∈ L2?

Idea:

Run a DFA/NFA for L1 on w.

Whenever it reaches an accepting state, optionally
hand the rest of w to a DFA/NFA for L2.

If the automaton for L2 accepts the rest, w ∈ L₁L₂.

If the automaton for L2 rejects the remainder, the
split was incorrect.

Concatenating Regular Languages

Concatenating Regular Languages

Machine for
L1

Concatenating Regular Languages

Machine for
L1

Machine for
L2

Concatenating Regular Languages

Machine for
L1

Machine for
L2

Concatenating Regular Languages

Machine for
L1

Machine for
L2

Concatenating Regular Languages

Machine for
L1

Machine for
L2

Machine for L1L2

Lots and Lots of Concatenation

Consider the language L = { aa, b }

LL is the set of strings formed by concatenating pairs of
strings in L.

{ aaaa, aab, baa, bb }

LLL is the set of strings formed by concatenating
triples of strings in L.

{ aaaaaa, aaaab, aabaa, aabb, baaaa, baab, bbaa, bbb}

LLLL is the set of strings formed by concatenating
quadruples of strings in L.

{ aaaaaaaa, aaaaaab, aaaabaa, aaaabb, aabaaaa,
aabaab, aabbaa, aabbb, baaaaaa, baaaab, baabaa,

baabb, bbaaaa, bbaab, bbbaa, bbbb}

Language Exponentiation

We can define what it means to “exponentiate” a
language as follows:

L0 = {ε}

The set containing just the empty string.

Idea: Any string formed by concatenating zero
strings together is the empty string.

Ln+1 = LLn

Idea: Concatenating (n+1) strings together works
by concatenating n strings, then concatenating one
more.

Question to ponder: Why define L0 = {ε}?

Question to ponder: What is Ø0?

The Kleene Closure

An important operation on languages is the
Kleene Closure, which is defined as

L* = { w ∈ Σ* | ∃n ∈ ℕ. w ∈ Ln }

Mathematically:

w ∈ L* iff ∃n ∈ ℕ. w ∈ Ln

Intuitively, all possible ways of concatenating
zero or more strings in L together, possibly
with repetition.

Question to ponder: What is Ø*?

The Kleene Closure

If L = { a, bb }, then L* = {

ε,

a, bb,

aa, abb, bba, bbbb,

aaa, aabb, abba, abbbb, bbaa, bbabb, bbbba, bbbbbb,

…

} Think of L* as the set of strings you can make if you
have a collection of stamps – one for each string in L –
and you form every possible string that can be made

from those stamps.

Reasoning about Infinity

If L is regular, is L* necessarily regular?

⚠ A Bad Line of Reasoning: ⚠

L0 = { ε } is regular.

L1 = L is regular.

L2 = LL is regular

L3 = L(LL) is regular

…

Regular languages are closed under union.

So the union of all these languages is
regular.

Reasoning about Infinity

Reasoning about Infinity

x

x

Reasoning about Infinity

x

x

Reasoning about Infinity

x

x

Reasoning about Infinity

x

x

Reasoning about Infinity

x

x

Reasoning about Infinity

x

x

Reasoning about Infinity

x

x

≠ 2x

Reasoning about Infinity

0.9 < 1

Reasoning about Infinity

0.99 < 1

Reasoning about Infinity

0.999 < 1

Reasoning about Infinity

0.9999 < 1

Reasoning about Infinity

0.99999 < 1

Reasoning about Infinity

0.99999 ≮ 1

Reasoning about Infinity

0 is finite

Reasoning about Infinity

1 is finite

Reasoning about Infinity

2 is finite

Reasoning about Infinity

3 is finite

Reasoning about Infinity

4 is finite

Reasoning about Infinity

∞ is finite

Reasoning about Infinity

∞ is finite
^ not

Reasoning About the Infinite

If a series of finite objects all have some
property, the “limit” of that process does
not necessarily have that property.

In general, it is not safe to conclude that
some property that always holds in the
finite case must hold in the infinite case.

(This is why calculus is interesting).

Idea: Can we directly convert an NFA for
language L to an NFA for language L*?

The Kleene Star

Machine for L

The Kleene Star

Machine for L

The Kleene Star

Machine for L

The Kleene Star

Machine for L

The Kleene Star

Machine for L

The Kleene Star

Machine for L

Machine for L*

The Kleene Star

Machine for L

Machine for L*

Question: Why add the new state out
front? Why not just make the old

start state accepting?

Closure Properties

Theorem: If L₁ and L₂ are regular languages
over an alphabet Σ, then so are the following
languages:

L₁

L₁ ∪ L₂

L₁ ∩ L₂

L₁L₂

L₁*

These properties are called closure
properties of the regular languages.

Next Time

Regular Expressions

Building languages from the ground up!

Thompson’s Algorithm

A UNIX Programmer in Theoryland.

Kleene’s Theorem

From machines to programs!

Thought for the Weekend

Learning How to Learn

