
Finite Automata
Part Two



Recap from Last Time



DFAs

A DFA is a

Deterministic

Finite

Automaton

DFAs are the simplest type of automaton 
that we will see in this course.



DFAs

A DFA is defined relative to some alphabet 
Σ.

For each state in the DFA, there must be 
exactly one transition defined for each 
symbol in Σ.

This is the “deterministic” part of DFA.

There is a unique start state.

There are zero or more accepting states.



A language L is called a regular language
if there exists a DFA D such that ℒ(D) = L.



NFAs

An NFA is a

Nondeterministic

Finite

Automaton

Can have missing transitions or multiple 
transitions defined on the same input 
symbol.

Accepts if any possible series of choices
leads to an accepting state.



Hello, NFA!

q2q2q2q2q1q1q0q0

h i

start h i



q0 q2q2q2q2

Hello, NFA!

q1q1q0

h i

start h i



q1q0q0 q2q2q2q2

Hello, NFA!

q1

h i

start h i



q1q0q0 q2q2q2q2

Hello, NFA!

q1

h i

start h i



q2q2q1q1q0q0 q2q2

Hello, NFA!

h i

start h i



q2q2q1q1q0q0 q2q2

Hello, NFA!

h i

start h i



q2q2q2q2

Tragedy in Paradise

q1q1q0q0

h i p

start h i



q0 q2q2q2q2

Tragedy in Paradise

q1q1q0

h i p

start h i



q1q0q0 q2q2q2q2

Tragedy in Paradise

q1

h i p

start h i



q1q0q0 q2q2q2q2

Tragedy in Paradise

q1

h i p

start h i



q2q2q1q1q0q0 q2q2

Tragedy in Paradise

h i p

start h i



q2q2q1q1q0q0 q2q2

Tragedy in Paradise

h i p

start h i



q2q2q1q1q0q0 q2

Tragedy in Paradise

h i p

start h i



q2q2q1q1q0q0

Tragedy in Paradise

h i p

start h i



NFA Languages

The language of an NFA is

ℒ(N) = { w ∈ Σ* | N accepts w }.

What is the language of this NFA?

(Assume Σ = {h, i}.)

q2q2q1q1q0q0

start h i



NFA Languages

The language of an NFA is

ℒ(N) = { w ∈ Σ* | N accepts w }.

q1q1q0q0 q2q2q2q2Σ = {0, 1}

q0q0q0q0
q0

start 1 1

0, 1

start startstart

0, 1



ε-Transitions

NFAs have a special type of transition called the 
ε-transition.

An NFA may follow any number of ε-transitions at 
any time without consuming any input.



q0 q1

q4 q5

q2

q0q3

q0

ε-Transitions

NFAs have a special type of transition called the 
ε-transition.

An NFA may follow any number of ε-transitions at 
any time without consuming any input.

q1

q4 q5

q2

q3 q4

start a a

a

b

b

ε

b, ε

ε



q0 q1

q4 q5

q2

q0q3

q0

ε-Transitions

NFAs have a special type of transition called the 
ε-transition.

An NFA may follow any number of ε-transitions at 
any time without consuming any input.

q1

q4 q5

q2

q3 q4 b a a b b

start a a

a

b

b

ε

b, ε

ε



q0 q1

q4 q5

q2

q0q3

q0

ε-Transitions

NFAs have a special type of transition called the 
ε-transition.

An NFA may follow any number of ε-transitions at 
any time without consuming any input.

q1

q4 q5

q2

q3 q4 b a a b b

start a a

a

b

b

ε

b, ε

ε



q0q0 q1

q4 q5

q2

q0q3

ε-Transitions

NFAs have a special type of transition called the 
ε-transition.

An NFA may follow any number of ε-transitions at 
any time without consuming any input.

q1

q4 q5

q2

q3 q4 b a a b b

start a a

a

b

b

ε

b, ε

ε



q0q3q3

q0q0 q1

q4 q5

q2

ε-Transitions

NFAs have a special type of transition called the 
ε-transition.

An NFA may follow any number of ε-transitions at 
any time without consuming any input.

q1

q4 q5

q2

q4 b a a b b

start a a

a

b

b

ε

b, ε

ε



q4q0q3q3

q0q0 q1

q4 q5

q2

ε-Transitions

NFAs have a special type of transition called the 
ε-transition.

An NFA may follow any number of ε-transitions at 
any time without consuming any input.

q1

q5

q2

b a a b b

start a a

a

b

b

ε

b, ε

ε



q4

q1

q4q0q3q3

q0q0 q1

q5

q2

ε-Transitions

NFAs have a special type of transition called the 
ε-transition.

An NFA may follow any number of ε-transitions at 
any time without consuming any input.

q5

q2

q4 b a a b b

start a a

a

b

b

ε

b, ε

ε



q1 q2

q4

q1

q4q0q3q3

q0q0

q5

q2

ε-Transitions

NFAs have a special type of transition called the 
ε-transition.

An NFA may follow any number of ε-transitions at 
any time without consuming any input.

q5q4 b a a b b

start a a

a

b

b

ε

b, ε

ε



q0 q2q1 q2

q4

q1

q4q0q3q3

q0

q5

ε-Transitions

NFAs have a special type of transition called the 
ε-transition.

An NFA may follow any number of ε-transitions at 
any time without consuming any input.

q5q4 b a a b b

start a a

a

b

b

ε

b, ε

ε



q0q3

q0q0 q2q1 q2

q4

q1

q4q3 q5

ε-Transitions

NFAs have a special type of transition called the 
ε-transition.

An NFA may follow any number of ε-transitions at 
any time without consuming any input.

q5q4 b a a b b

start a a

a

b

b

ε

b, ε

ε



q4q0q3q3

q0q0 q2q1 q2

q4

q1

q5

ε-Transitions

NFAs have a special type of transition called the 
ε-transition.

An NFA may follow any number of ε-transitions at 
any time without consuming any input.

q5 b a a b b

start a a

a

b

b

ε

b, ε

ε



q4 q5q4q0q3q3

q0q0 q2q1 q2q1

q5

ε-Transitions

NFAs have a special type of transition called the 
ε-transition.

An NFA may follow any number of ε-transitions at 
any time without consuming any input.

q4 b a a b b

start a a

a

b

b

ε

b, ε

ε



q0q3 q5q4 q5q4q3

q0q0 q2q1 q2q1

ε-Transitions

NFAs have a special type of transition called the 
ε-transition.

An NFA may follow any number of ε-transitions at 
any time without consuming any input.

q4 b a a b b

start a a

a

b

b

ε

b, ε

ε



q4q3q3 q5q4 q5

q0q0 q2q1 q2q1

ε-Transitions

NFAs have a special type of transition called the 
ε-transition.

An NFA may follow any number of ε-transitions at 
any time without consuming any input.

b a a b b

start a a

a

b

b

ε

b, ε

ε



q4q3q3 q5q4 q5

q0q0 q2q1 q2q1

ε-Transitions

NFAs have a special type of transition called the 
ε-transition.

An NFA may follow any number of ε-transitions at 
any time without consuming any input.

b a a b b

start a a

a

b

b

ε

b, ε

ε



ε-Transitions

NFAs have a special type of transition called the 
ε-transition.

An NFA may follow any number of ε-transitions at 
any time without consuming any input.

NFAs are not required to follow ε-transitions. It's 
simply another option at the machine's disposal.



Intuiting Nondeterminism

Nondeterministic machines are a serious 
departure from physical computers. How 
can we build up an intuition for them?

There are two particularly useful 
frameworks for interpreting 
nondeterminism:

Perfect positive guessing

Massive parallelism



q₀ q₁ q₂ q₃

Perfect Positive Guessing

q₀ q₁ q₂ q₃q₃
start b a

Σ

a



q₀ q₁ q₂ q₃

Perfect Positive Guessing

a

q₀ q₁ q₂

b a b

q₃

a

q₃
start b a

Σ

a



q₀q₀ q₁ q₂ q₃

Perfect Positive Guessing

a

q₁ q₂

b a b

q₃

a

q₃
start b a

Σ

a



q₀q₀ q₁ q₂ q₃

Perfect Positive Guessing

a

q₁ q₂

b a b

q₃

a

q₃
start b a

Σ

a



q₀q₀ q₁ q₂ q₃

Perfect Positive Guessing

a

q₁ q₂

b a b

q₃

a

q₃
start b a

Σ

a



q₀ q₁

a b

q₀ q₁ q₂ q₃

Perfect Positive Guessing

a

q₂

b

q₃

a

q₃
start b a

Σ

a



q₀ q₁

a b

q₀ q₁ q₂ q₃

Perfect Positive Guessing

a

q₂

b

q₃

a

q₃
start b a

Σ

a



q₁ q₂q₀ q₁

a b

q₀ q₂ q₃

Perfect Positive Guessing

a b

q₃

a

q₃
start b a

Σ

a



q₁ q₂q₀ q₁

a b

q₀ q₂ q₃

Perfect Positive Guessing

a b

q₃

a

q₃
start b a

Σ

a



q₃q₃q₂q₁ q₂q₀ q₁

a b

q₀

Perfect Positive Guessing

a b a

q₃
start b a

Σ

a



q₃q₃q₂q₁ q₂q₀ q₁

a b

q₀

Perfect Positive Guessing

a b a

q₃
start b a

Σ

a



Perfect Positive Guessing

We can view nondeterministic machines as 
having Magic Superpowers that enable them 
to guess choices that lead to an accepting 
state.

If there is at least one choice that leads to an 
accepting state, the machine will guess it.

If there are no choices, the machine guesses 
any one of the wrong guesses.

There is no known way to physically model 
this intuition of nondeterminism – this is quite 
a departure from reality!



q₃q₃q₂q₁ q₂q₀ q₁q₀

Massive Parallelism

a b a b a

q₃
start b a

Σ

a



q₃q₂q₁q₀

Massive Parallelism

a b a b a

q₃
start b a

Σ

a



q₃q₂q₁q₀

Massive Parallelism

a b a b a

q₃
start b a

Σ

a



q₃q₂q₁q₀

Massive Parallelism

a b a b a

q₃
start b a

Σ

a



q₃q₂q₁q₀

Massive Parallelism

a b a b a

q₃
start b a

Σ

a



q₃q₂q₁q₀

Massive Parallelism

a b a b a

q₃
start b a

Σ

a



q₃q₂q₁q₀

Massive Parallelism

a b a b a

q₃
start b a

Σ

a



q₃q₂q₁q₀

Massive Parallelism

a b a b a

q₃
start b a

Σ

a



q₃q₂q₁q₀

Massive Parallelism

a b a b a

q₃
start b a

Σ

a



q₃q₂q₁q₀

Massive Parallelism

a b a b a

q₃
start b a

Σ

a



q₃q₂q₁q₀

Massive Parallelism

a b a b a

q₃
start b a

Σ

a



q₃q₂q₁q₀

Massive Parallelism

a b a b a

q₃
start b a

Σ

a



q₃q₂q₁q₀

Massive Parallelism

a b a b a

q₃
start b a

Σ

a



q₃q₂q₁q₀

Massive Parallelism

a b a b a

q₃
start b a

Σ

a



q₃q₂q₁q₀

Massive Parallelism

a b a b a

q₃
start b a

Σ

a



q₃q₂q₁q₀

Massive Parallelism

a b a b a

q₃
start b a

Σ

a



q₃q₂q₁q₀

Massive Parallelism

a b a b a

q₃
start b a

Σ

a



q₃q₂q₁q₀

Massive Parallelism

a b a b a

q₃
start b a

Σ

a



q₃q₂q₁q₀

Massive Parallelism

a b a b a

q₃
start b a

Σ

a



q₃q₂q₁q₀

Massive Parallelism

a b a b a

q₃
start b a

Σ

a



q₃q₂q₁q₀

Massive Parallelism

a b a b a

q₃
start b a

Σ

a



q₃q₂q₁q₀

Massive Parallelism

a b a b a

q₃
start b a

Σ

a



q₃q₂q₁q₀

Massive Parallelism

a b a b a

q₃
start b a

Σ

a



q₃q₂q₁q₀

Massive Parallelism

a b a b a

q₃
start b a

Σ

a



q₃q₂q₁q₀

Massive Parallelism

a b a b a

q₃
start b a

Σ

a



q₃q₂q₁q₀

Massive Parallelism

a b a b a

q₃
start b a

Σ

a



q₃q₂q₁q₀

Massive Parallelism

a b a b a

q₃
start b a

Σ

a



q₃q₂q₁q₀

Massive Parallelism

a b a b a

q₃
start b a

Σ

a



q₃q₂q₁q₀

Massive Parallelism

a b a b a

q₃
start b a

Σ

a



q₃q₂q₁q₀

Massive Parallelism

a b a b a

q₃
start b a

Σ

a



q₂q₁q₀

Massive Parallelism

a b a b a

q₃q₃

We're in at least one accepting state, 
so there's some path that gets us to an 

accepting state.

start b a

Σ

a



q₀ q₃q₂q₁

Massive Parallelism

a b a b

q₃q₀
start b a

Σ

a



q₃q₂q₁q₀

Massive Parallelism

a b a b

q₃
start b a

Σ

a



q₃q₂q₁q₀

Massive Parallelism

a b a b

q₃
start b a

Σ

a



q₃q₂q₁q₀

Massive Parallelism

a b a b

q₃
start b a

Σ

a



q₃q₂q₁q₀

Massive Parallelism

a b a b

q₃
start b a

Σ

a



q₃q₂q₁q₀

Massive Parallelism

a b a b

q₃
start b a

Σ

a



q₃q₂q₁q₀

Massive Parallelism

a b a b

q₃
start b a

Σ

a



q₃q₂q₁q₀

Massive Parallelism

a b a b

q₃
start b a

Σ

a



q₃q₂q₁q₀

Massive Parallelism

a b a b

q₃
start b a

Σ

a



q₃q₂q₁q₀

Massive Parallelism

a b a b

q₃
start b a

Σ

a



q₃q₂q₁q₀

Massive Parallelism

a b a b

q₃
start b a

Σ

a



q₃q₂q₁q₀

Massive Parallelism

a b a b

q₃
start b a

Σ

a



q₃q₂q₁q₀

Massive Parallelism

a b a b

q₃
start b a

Σ

a



q₃q₂q₁q₀

Massive Parallelism

a b a b

q₃
start b a

Σ

a



q₃q₂q₁q₀

Massive Parallelism

a b a b

q₃
start b a

Σ

a



q₃q₂q₁q₀

Massive Parallelism

a b a b

q₃
start b a

Σ

a



q₃q₂q₁q₀

Massive Parallelism

a b a b

q₃
start b a

Σ

a



q₃q₂q₁q₀

Massive Parallelism

a b a b

q₃
start b a

Σ

a



q₃q₂q₁q₀

Massive Parallelism

a b a b

q₃
start b a

Σ

a



q₃q₂q₁q₀

Massive Parallelism

a b a b

q₃
start b a

Σ

a



q₃q₂q₁q₀

Massive Parallelism

a b a b

q₃
start b a

Σ

a



q₃q₂q₁q₀

Massive Parallelism

a b a b

q₃
start b a

Σ

a



q₃q₂q₁q₀

Massive Parallelism

a b a b

q₃
start b a

Σ

a



q₃q₂q₁q₀

Massive Parallelism

a b a b

q₃
start b a

Σ

a



q₂q₁q₀

Massive Parallelism

a b a b

q₃q₃

We’re not in any accepting state, so no 
possible path accepts.

start b a

Σ

a



Massive Parallelism

An NFA can be thought of as a DFA that can be in many states 
at once.

At each point in time, when the NFA needs to follow a 
transition, it tries all the options at the same time.

(Here's a rigorous explanation about how this works; read this 
on your own time).

Start off in the set of all states formed by taking the start state 
and including each state that can be reached by zero or more ε-
transitions.

When you read a symbol a in a set of states S:

Form the set S’ of states that can be reached by following a 
single a transition from some state in S.

Your new set of states is the set of states in S’, plus the states 
reachable from S’ by following zero or more ε-transitions.



So What?

Each intuition of nondeterminism is useful in a different 
setting:

Perfect guessing is a great way to think about how to 
design a machine.

Massive parallelism is a great way to test machines –
and has nice theoretical implications.

Nondeterministic machines may not be feasible, but 
they give a great basis for interesting questions:

Can any problem that can be solved by a 
nondeterministic machine be solved by a deterministic 
machine?

Can any problem that can be solved by a 
nondeterministic machine be solved efficiently by a 
deterministic machine?

The answers vary from automaton to automaton.



Designing NFAs



Designing NFAs

Embrace the nondeterminism!

Good model: Guess-and-check:

Is there some information that you'd really 
like to have? Have the machine 
nondeterministically guess that information.

Then, have the machine deterministically 
check that the choice was correct.

The guess phase corresponds to trying lots of 
different options.

The check phase corresponds to filtering out 
bad guesses or wrong options.



Guess-and-Check

L = { w ∈ {0, 1}* | w ends in 010 or 101 }



Guess-and-Check

L = { w ∈ {0, 1}* | w ends in 010 or 101 }

start
0

1

11

1

1

1

0

0

0

0

0

0

1



Guess-and-Check

L = { w ∈ {0, 1}* | w ends in 010 or 101 }

Nondeterministically guess when the end of the 
string is coming up.

Deterministically check whether you were correct.
start

1

0

1

1 0

0

Σ



Guess-and-Check

L = { w ∈ {0, 1}* | w ends in 010 or 101 }

start

1

0

1

1 0

0

Σ
1 0 1 0 1 0



Guess-and-Check

L = { w ∈ {0, 1}* | w ends in 010 or 101 }

1 0 1 0 1 0start

1

0

10

Σ

1 0



Guess-and-Check

L = { w ∈ {0, 1}* | w ends in 010 or 101 }

1 0 1 0 1 0start

1

0

10

Σ

1 0



Guess-and-Check

L = { w ∈ {0, 1}* | w ends in 010 or 101 }

1 0 1 0 1 0start

1

0

10

Σ

1 0



Guess-and-Check

L = { w ∈ {0, 1}* | w ends in 010 or 101 }

1 0 1 0 1 0start

1

0

10

Σ

1 0



Guess-and-Check

L = { w ∈ {0, 1}* | w ends in 010 or 101 }

1 0 1 0 1 0start

1

0

10

Σ

1 0



Guess-and-Check

L = { w ∈ {0, 1}* | w ends in 010 or 101 }

1 0 1 0 1 0start

1

0

10

Σ

1 0



Guess-and-Check

L = { w ∈ {0, 1}* | w ends in 010 or 101 }

1 0 1 0 1 0start

1

0

10

Σ

1 0



Guess-and-Check

L = { w ∈ {0, 1}* | w ends in 010 or 101 }

1 0 1 0 1 0start

1

0

10

Σ

1 0



Guess-and-Check

L = { w ∈ {0, 1}* | w ends in 010 or 101 }

1 0 1 0 1 0start

1

0

10

Σ

1 0



Guess-and-Check

L = { w ∈ {a, b, c}* | at least one of a, b, or c is not in w }



Guess-and-Check

L = { w ∈ {a, b, c}* | at least one of a, b, or c is not in w }

a

a

a

aa

a, b

a, c

b, c

b

b

b

b

b

c

c

c c

Σ

start



Guess-and-Check

L = { w ∈ {a, b, c}* | at least one of a, b, or c is not in w }

Nondeterministically guess
which character is missing.

Deterministically check
whether that character is 

indeed missing.

start

a, b

a, c

b, c

ε

ε

ε



Guess-and-Check

L = { w ∈ {a, b, c}* | at least one of a, b, or c is not in w }

a c c a c cstart

a, b

a, c

b, c

ε

ε

ε



Guess-and-Check

L = { w ∈ {a, b, c}* | at least one of a, b, or c is not in w }

a c c a c cstart

a, b

a, c

b, c

ε

ε

ε



Guess-and-Check

L = { w ∈ {a, b, c}* | at least one of a, b, or c is not in w }

a c c a c cstart

a, b

a, c

b, c

ε

ε

ε



Guess-and-Check

L = { w ∈ {a, b, c}* | at least one of a, b, or c is not in w }

a c c a c cstart

a, b

a, c

b, c

ε

ε

ε



Guess-and-Check

L = { w ∈ {a, b, c}* | at least one of a, b, or c is not in w }

a c c a c cstart

a, b

a, c

b, c

ε

ε

ε



Guess-and-Check

L = { w ∈ {a, b, c}* | at least one of a, b, or c is not in w }

a c c a c cstart

a, b
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Time out for Announcements



Midterm and Pset

• Congratulations on finishing the 
midterm!

• We’ll have this returned to you on 
Monday.

• Problem Set 4 is due next Thursday.



Just how powerful are NFAs?



NFAs and DFAs

Any language that can be accepted by a 
DFA can be accepted by an NFA.

Why?

Every DFA essentially already is an NFA!

Question: Can any language accepted by 
an NFA also be accepted by a DFA?

Surprisingly, the answer is yes!
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Tabular DFAs
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Tabular DFAs
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My Turn to Code Things Up!
int kTransitionTable[kNumStates][kNumSymbols] = {

{0, 0, 1, 3, 7, 1, …},

…

};

bool kAcceptTable[kNumStates] = {

false,

true,

true,

…

};

bool SimulateDFA(string input) {

int state = 0;

for (char ch: input) {

state = kTransitionTable[state][ch];

}

return kAcceptTable[state];

}



Thought Experiment:

How would you simulate an NFA in 
software?
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Some Caveats

Question: what about ε-transitions?

Answer: always include any states you can reach 
by following ε-transitions.

Question: what happens if there are no 
transitions to follow from a set of states for 
the character you’re trying to fill in?

Answer: then the set of states you can 
reach is the empty set!

Example included in the appendix of this 
lecture showing this construction with both 
of these scenarios.



The Subset Construction

• This construction for transforming an NFA into a DFA is called the 
subset construction (or sometimes the powerset 
construction).

• Each state in the DFA is associated with a set of states in the NFA.

• The start state in the DFA corresponds to the start state of the 
NFA, plus all states reachable via ε-transitions.

• If a state q in the DFA corresponds to a set of states S in the NFA, 
then the transition from state q on a character a is found as 
follows:

• Let S' be the set of states in the NFA that can be reached by 
following a transition labeled a from any of the states in S. (This 
set may be empty.)

• Let S'' be the set of states in the NFA reachable from some state 
in S' by following zero or more epsilon transitions.

• The state q in the DFA transitions on a to a DFA state 
corresponding to the set of states S''.

• Read Sipser for a formal account.



The Subset Construction

For the purposes of this class, we won’t ask 
you to actually perform the subset 
construction.

Hopefully though, you’ve been convinced 
that, in principle, you could follow this 
procedure to turn any NFA into a DFA.



The Subset Construction

In converting an NFA to a DFA, the DFA's 
states correspond to sets of NFA states.

Useful fact: |℘(S)| = 2|S| for any finite set 
S.

In the worst-case, the construction can 
result in a DFA that is exponentially larger
than the original NFA.

Question to ponder: Can you find a family 
of languages that have NFAs of size n, but 
no DFAs of size less than 2n?



A language L is called a regular language
if there exists a DFA D such that ℒ(D) = L.



An Important Result

Theorem: A language L is regular iff there

is some NFA N such that ℒ(N) = L.

Proof Sketch: If L is regular, there exists

some DFA for it, which we can easily

convert into an NFA.

If L is accepted by some NFA, we can use 
the subset construction to convert it into a 

DFA that accepts the same language, so L is 
regular. ■
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Why This Matters

We now have two perspectives on regular 
languages:

Regular languages are languages accepted 
by DFAs.

Regular languages are languages accepted 
by NFAs.

We can now reason about the regular 
languages in two different ways.



Properties of Regular Languages



The Complement of a Language

Given a language L ⊆ Σ*, the complement of 

that language (denoted 𝐿 ) is the language of all 
strings in Σ* that aren't in L.

Formally:

𝐿 = Σ* - L
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The Complement of a Language

Given a language L ⊆ Σ*, the complement of 

that language (denoted 𝐿) is the language of all 
strings in Σ* that aren't in L.

Formally:

𝐿 = Σ* - L

L 𝐿

Σ*

Good proofwriting exercise:
prove L̿ = L for any language 

L.



Complementing Regular Languages

L = { w ∈ {a, b}* | w contains aa as a substring }

q0 q1 q2

𝐿 = { w ∈ {a, b}* | w does not contain aa as a substring }

q0 q1 q2

a

Σ

start
a

b

b

a

Σ

start
a

b

b



Complementing Regular Languages

L = { w ∈ {a, *, /}* | w doesn't represent a C-style
comment  }

q1 q2 q3 q4q0

q5

/

*

a

/, a

a, *

/ *

Σ

*
a, /

Σ

start



Complementing Regular Languages

L = { w ∈ {a, *, /}* | w doesn't represent a C-style
comment  }

q1 q2 q3 q4q0

q5q5

q3q2q1q0
start /

*

a

/, a

a, *

/ *

Σ

a, /

Σ



Closure Properties

Theorem: If L is a regular language, then 𝐿 is also 
a regular language.

As a result, we say that the regular languages are 
closed under complementation.

All languages

Regular languages

L

𝐿

Question to ponder: are the 
nonregular languages closed 

under complementation?



The Union of Two Languages

If L1 and L2 are languages over the alphabet Σ, the 
language L1 ∪ L2 is the language of all strings in at 
least one of the two languages.

If L1 and L2 are regular languages, is L1 ∪ L2?
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If L1 and L2 are languages over the alphabet Σ, the 
language L1 ∪ L2 is the language of all strings in at 
least one of the two languages.

If L1 and L2 are regular languages, is L1 ∪ L2?

Machine for L1

Machine for L2Machine for
L1 ∪ L2

Question to 
ponder: where have 

you seen this idea 
before?



The Intersection of Two Languages

If L1 and L2 are languages over Σ, then L1 ∩ L2 is the 
language of strings in both L1 and L2.

Question: If L1 and L2 are regular, is L1 ∩ L2 regular 
as well?
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L1 ∪ L2

The Intersection of Two Languages

If L1 and L2 are languages over Σ, then L1 ∩ L2 is the 
language of strings in both L1 and L2.

Question: If L1 and L2 are regular, is L1 ∩ L2 regular 
as well?

Hey, it's De 
Morgan's laws!



Concatenation



String Concatenation

If w ∈ Σ* and x ∈ Σ*, the concatenation of w and x, 
denoted wx, is the string formed by tacking all the 
characters of x onto the end of w.

Example: if w = quo and x = kka, the concatenation
wx = quokka.

Analogous to the + operator for strings in many 
programming languages.

Some facts about concatenation:

The empty string ε is the identity element for 
concatenation:

wε = εw = w

Concatenation is associative:

wxy = w(xy) = (wx)y



Concatenation

The concatenation of two languages L₁ and 
L₂ over the alphabet Σ is the language

L₁L₂ = { wx ∈ Σ* | w ∈ L₁ ∧ x ∈ L₂ }

=Two views of L₁L₂:

The set of all strings that can be made by 
concatenating a string in L₁ with a string in 
L₂.

The set of strings that can be split into two 
pieces: a piece from L₁ and a piece from L₂.

Conceptually similar to the Cartesian product 
of two sets, only with strings.



Concatenation Example

Let Σ = { a, b, …, z, A, B, …, Z } and consider these
languages over Σ:

Noun = { Puppy, Rainbow, Whale, … }

Verb = { Hugs, Juggles, Loves, … }

The = { The }

The language TheNounVerbTheNoun is

{ ThePuppyHugsTheWhale,

TheWhaleLovesTheRainbow,

TheRainbowJugglesTheRainbow, … }



Concatenation

The concatenation of two languages L₁ and L₂ 
over the alphabet Σ is the language

L₁L₂ = { wx ∈ Σ* | w ∈ L₁ ∧ x ∈ L₂ }

Two views of L₁L₂:

The set of all strings that can be made by 
concatenating a string in L₁ with a string in L₂.

The set of strings that can be split into two pieces: 
a piece from L₁ and a piece from L₂.



Concatenating Regular Languages

If L1 and L2 are regular languages, is L1L2?

Intuition – can we split a string w into two strings 
xy such that x ∈ L1 and y ∈ L2?

Idea:

Run a DFA/NFA for L1 on w.

Whenever it reaches an accepting state, optionally 
hand the rest of w to a DFA/NFA for L2.

If the automaton for L2 accepts the rest, w ∈ L₁L₂.

If the automaton for L2 rejects the remainder, the 
split was incorrect.
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Concatenating Regular Languages

Machine for
L1

Machine for
L2

Machine for L1L2



Lots and Lots of Concatenation

Consider the language L = { aa, b }

LL is the set of strings formed by concatenating pairs of 
strings in L.

{ aaaa, aab, baa, bb }

LLL is the set of strings formed by concatenating 
triples of strings in L.

{ aaaaaa, aaaab, aabaa, aabb, baaaa, baab, bbaa, bbb}

LLLL is the set of strings formed by concatenating 
quadruples of strings in L.

{ aaaaaaaa, aaaaaab, aaaabaa, aaaabb, aabaaaa,
aabaab, aabbaa, aabbb, baaaaaa, baaaab, baabaa,

baabb, bbaaaa, bbaab, bbbaa, bbbb}



Language Exponentiation

We can define what it means to “exponentiate” a 
language as follows:

L0 = {ε}

The set containing just the empty string.

Idea: Any string formed by concatenating zero 
strings together is the empty string.

Ln+1 = LLn

Idea: Concatenating (n+1) strings together works 
by concatenating n strings, then concatenating one 
more.

Question to ponder: Why define L0 = {ε}?

Question to ponder: What is Ø0?



The Kleene Closure

An important operation on languages is the 
Kleene Closure, which is defined as

L* = { w ∈ Σ*  |  ∃n ∈ ℕ. w ∈ Ln }

Mathematically:

w ∈ L*     iff ∃n ∈ ℕ. w ∈ Ln

Intuitively, all possible ways of concatenating 
zero or more strings in L together, possibly 
with repetition.

Question to ponder: What is Ø*?



The Kleene Closure

If L = { a, bb }, then L* = {

ε,

a, bb,

aa, abb, bba, bbbb,

aaa, aabb, abba, abbbb, bbaa, bbabb, bbbba, bbbbbb,

…

} Think of L* as the set of strings you can make if you 
have a collection of stamps – one for each string in L –
and you form every possible string that can be made 

from those stamps.



Reasoning about Infinity

If L is regular, is L* necessarily regular?

⚠ A Bad Line of Reasoning: ⚠

L0 = { ε } is regular.

L1 = L is regular.

L2 = LL is regular

L3 = L(LL) is regular

…

Regular languages are closed under union.

So the union of all these languages is 
regular.



Reasoning about Infinity
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Reasoning about Infinity

x              

x

≠ 2x
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Reasoning about Infinity

0.99999 < 1



Reasoning about Infinity

0.99999 ≮ 1
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Reasoning about Infinity
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Reasoning about Infinity
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^ not



Reasoning About the Infinite

If a series of finite objects all have some 
property, the “limit” of that process does 
not necessarily have that property.

In general, it is not safe to conclude that 
some property that always holds in the 
finite case must hold in the infinite case.

(This is why calculus is interesting).



Idea: Can we directly convert an NFA for 
language L to an NFA for language L*?



The Kleene Star

Machine for L
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The Kleene Star

Machine for L
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The Kleene Star

Machine for L

Machine for L*

Question: Why add the new state out 
front? Why not just make the old 

start state accepting?



Closure Properties

Theorem: If L₁ and L₂ are regular languages 
over an alphabet Σ, then so are the following 
languages:

L₁

L₁ ∪ L₂

L₁ ∩ L₂

L₁L₂

L₁*

These properties are called closure 
properties of the regular languages.



Next Time

Regular Expressions

Building languages from the ground up!

Thompson’s Algorithm

A UNIX Programmer in Theoryland.

Kleene’s Theorem

From machines to programs!



Thought for the Weekend

Learning How to Learn


